以前、集合学習や、交差検証に関する記事、また機械学習のECへの応用に関する記事等で、繰り返し、AIシステムにおけるモデルのロバストネスを高め、「過学習(Overfitting)」をいかに防いでいくかが大事であると述べました。 今回は、そもそもその「過 ...
Single-step adversarial training (SSAT) has demonstrated the potential to achieve both efficiency and robustness. However, SSAT suffers from catastrophic overfitting (CO), a phenomenon that leads to a ...
Abstract: In this paper, we investigated the overfitting characteristics of nonlinear equalizers based on an artificial neural network (ANN) and the Volterra series transfer function (VSTF), which ...
Modern neural networks, with billions of parameters, are so overparameterized that they can "overfit" even random, structureless data. Yet when trained on datasets with structure, they learn the ...