SMOTE(Synthetic Minority Over-sampling Technique)は、不均衡なデータセットの問題に対処するために開発されたオーバーサンプリングの手法です。オーバーサンプリングの主な目的は少数クラスのサンプル数を増加させることにより、クラス間のバランスを改善し ...
This project explores the issue of customer churn in the advertising industry, particularly focusing on the challenges of dealing with imbalanced data. The analysis includes Logistic Regression as the ...
"Model_Bag_Smote = BaggingClassifier(base_estimator=RandomForestClassifier(n_estimators=50,random_state=1,max_depth=4,min_samples_leaf=15,\n", " min_samples_split=45 ...
Your browser does not support the audio element. Training a Machine Learning Model with this imbalanced dataset, often causes the model to develop a certain bias ...